|
|
A319925
|
|
Number of integer partitions with no 1's whose parts can be combined together using additions and multiplications to obtain n.
|
|
1
|
|
|
0, 1, 1, 2, 2, 5, 4, 10, 10, 18, 19, 38, 35, 62, 71, 113, 122, 199, 213, 329
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
All parts of the partition must be used in such a combination.
|
|
LINKS
|
Table of n, a(n) for n=1..20.
|
|
FORMULA
|
a(n) >= A001055(n).
a(n) >= A002865(n).
|
|
EXAMPLE
|
The a(8) = 10 partitions (which are not all partitions of 8):
(8),
(42), (62), (53), (44),
(222), (322), (422), (332),
(2222).
For example, this list contains (322) because we can write 8 = 3*2+2.
|
|
CROSSREFS
|
Cf. A000792, A001970, A002865, A005520, A048249, A066739, A275870, A319850, A318949, A319909, A319910, A319912, A319913.
Sequence in context: A095057 A056439 A056444 * A112472 A240412 A292263
Adjacent sequences: A319922 A319923 A319924 * A319926 A319927 A319928
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Gus Wiseman, Oct 01 2018
|
|
STATUS
|
approved
|
|
|
|