login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319673
Primes that are neither a twin prime nor a Sophie Germain or safe prime.
1
37, 67, 79, 97, 127, 157, 163, 211, 223, 257, 277, 307, 317, 331, 337, 353, 367, 373, 379, 389, 397, 401, 409, 439, 449, 457, 487, 499, 541, 547, 557, 577, 607, 613, 631, 647, 673, 677, 691, 701, 709, 727, 733, 739, 751, 757, 769, 773, 787, 797, 853, 877, 907, 919, 929, 937, 941, 947, 967, 971, 977, 991, 997
OFFSET
1,1
LINKS
FORMULA
EXAMPLE
37 is prime, but it is not a twin prime (neither 35 nor 39 are prime), it is not a Sophie Germain prime (2*37 + 1 = 75 is not prime), and it is not a safe prime ((37 - 1)/2 = 18 is not prime). So 37 is in the sequence.
MAPLE
select(p->isprime(p) and not isprime(p-2) and not isprime(p+2) and not isprime(2*p+1) and not isprime((p-1)/2), [$1..1000]); # Muniru A Asiru, Sep 27 2018
MATHEMATICA
Select[Prime@ Range@ PrimePi[10^3], NoneTrue[{# - 2, # + 2, 2 # + 1, (# - 1)/2}, PrimeQ] &] (* Michael De Vlieger, Sep 26 2018 *)
PROG
(PARI) isok(p) = isprime(p) && !isprime(p-2) && !isprime(p+2) && !isprime(2*p+1) && !isprime((p-1)/2); \\ Michel Marcus, Sep 26 2018
(GAP) Filtered([1..1000], p->IsPrime(p) and not IsPrime(p-2) and not IsPrime(p+2) and not IsPrime(2*p+1) and not IsPrime((p-1)/2)); # Muniru A Asiru, Sep 27 2018
(Magma) [p: p in PrimesUpTo(1000) | not IsPrime(p-2) and not IsPrime(p+2)and not IsPrime(2*p+1)and not IsPrime((p-1) div 2)]; // Vincenzo Librandi, Ocy 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Steiner, Sep 25 2018
STATUS
approved