login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319674
a(n) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 - 10 - 11 - 12 + ... - (up to n).
1
1, 3, 6, 2, -3, -9, -2, 6, 15, 5, -6, -18, -5, 9, 24, 8, -9, -27, -8, 12, 33, 11, -12, -36, -11, 15, 42, 14, -15, -45, -14, 18, 51, 17, -18, -54, -17, 21, 60, 20, -21, -63, -20, 24, 69, 23, -24, -72, -23, 27, 78, 26, -27, -81, -26, 30, 87, 29, -30, -90, -29
OFFSET
1,2
COMMENTS
In general, for sequences that add the first k natural numbers and then subtract the next k natural numbers, and continue to alternate in this way up to n, we have a(n) = Sum_{i=1..n} i*(-1)^floor((i-1)/k). Here, k=3.
FORMULA
a(n) = Sum_{i=1..n} i*(-1)^floor((i-1)/3).
From Colin Barker, Sep 26 2018: (Start)
G.f.: x*(1 + 2*x + 3*x^2 - 2*x^3 - x^4) / ((1 - x)*(1 + x)^2*(1 - x + x^2)^2).
a(n) = a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
a(1) = 1;
a(2) = 1 + 2 = 3;
a(3) = 1 + 2 + 3 = 6;
a(4) = 1 + 2 + 3 - 4 = 2;
a(5) = 1 + 2 + 3 - 4 - 5 = -3;
a(6) = 1 + 2 + 3 - 4 - 5 - 6 = -9;
a(7) = 1 + 2 + 3 - 4 - 5 - 6 + 7 = -2;
a(8) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 = 6;
a(9) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 = 15;
a(10) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 - 10 = 5; etc.
MATHEMATICA
Table[Sum[i (-1)^Floor[(i - 1)/3], {i, n}], {n, 60}]
Accumulate[Flatten[If[EvenQ[#[[1]]], -#, #]&/@Partition[Range[70], 3]]] (* or *) LinearRecurrence[{1, 0, -2, 2, 0, -1, 1}, {1, 3, 6, 2, -3, -9, -2}, 70] (* Harvey P. Dale, Sep 15 2021 *)
PROG
(PARI) Vec(x*(1 + 2*x + 3*x^2 - 2*x^3 - x^4) / ((1 - x)*(1 + x)^2*(1 - x + x^2)^2) + O(x^60)) \\ Colin Barker, Sep 26 2018
CROSSREFS
Cf. A001057 (k=1), A077140 (k=2), this sequence (k=3).
Sequence in context: A021280 A282728 A193537 * A372696 A021738 A016614
KEYWORD
sign,look,easy
AUTHOR
Wesley Ivan Hurt, Sep 25 2018
STATUS
approved