login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318730
Number of cyclic compositions (necklaces of positive integers) summing to n with adjacent parts (including the last and first part) being indivisible (either way).
5
1, 1, 1, 1, 2, 1, 3, 2, 3, 6, 5, 8, 7, 14, 15, 21, 31, 39, 51, 69, 98, 133, 177, 254, 329, 471, 632, 902, 1230, 1710, 2370, 3270, 4591, 6384, 8898, 12429, 17252, 24230, 33783, 47405, 66254, 92860, 130142, 182469, 256262, 359676, 505231, 710059, 997953, 1404215
OFFSET
1,5
LINKS
FORMULA
a(n) = A328601(n) + 1. - Andrew Howroyd, Oct 27 2019
EXAMPLE
The a(14) = 14 cyclic compositions with adjacent parts indivisible either way:
(14)
(3,11) (4,10) (5,9) (6,8)
(2,5,7) (2,7,5) (3,4,7) (3,7,4)
(2,3,2,7) (2,3,4,5) (2,5,2,5) (2,5,4,3) (3,4,3,4)
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Or[Length[#]==1, And[neckQ[#], And@@Not/@Divisible@@@Partition[#, 2, 1, 1], And@@Not/@Divisible@@@Reverse/@Partition[#, 2, 1, 1]]]&]], {n, 20}]
PROG
(PARI)
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 02 2018
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018
STATUS
approved