login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318733
Decimal expansion of the nontrivial real solution to x^6 + x^5 - x^3 - x^2 - x + 1 = 0.
1
5, 7, 6, 4, 7, 1, 4, 2, 9, 6, 1, 9, 5, 5, 0, 6, 1, 0, 4, 8, 6, 3, 5, 4, 4, 0, 0, 1, 7, 7, 5, 7, 8, 5, 1, 7, 4, 7, 7, 3, 4, 2, 1, 8, 2, 1, 6, 1, 4, 7, 9, 0, 4, 9, 5, 3, 1, 2, 0, 0, 5, 8, 8, 4, 2, 6, 1, 1, 8, 7, 9, 3, 3, 9, 2, 6, 3
OFFSET
0,1
COMMENTS
The second part of Ramanujan's question 699 in the Journal of the Indian Mathematical Society (VII, 199) asked "Show that the roots of the equations ..., x^6 + x^5 - x^3 - x^2 - x + 1 = 0 can be expressed in terms of radicals."
The polynomial includes a trivial factor, i.e., x^6 + x^5 - x^3 - x^2 - x + 1 = (x - 1) * (x^5 + 2*x^4 + 2*x^3 + x^2 - 1).
REFERENCES
V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
LINKS
B. C. Berndt, Y. S. Choi, S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q699, JIMS VII).
FORMULA
Expressed in radicals, the number is
(1/20)*4^(4/5)*((215*sqrt(5)*sqrt(235 + 94*sqrt(5)) - 10575 - 5405*sqrt(5) + 597*sqrt(235 + 94*sqrt(5)))/sqrt(235 + 94*sqrt(5)))^(1/5) - (329*sqrt(5)/sqrt(235 + 94*sqrt(5)) - 57*sqrt(5) + 9*sqrt(235 + 94*sqrt(5)) - 89)*4^(3/5)/(20*((215*sqrt(5)*sqrt(235 + 94*sqrt(5)) - 10575 - 5405*sqrt(5) + 597*sqrt(235 + 94*sqrt(5)))/sqrt(235 + 94*sqrt(5)))^(3/5)) - (47*sqrt(5)/sqrt(235 + 94*sqrt(5)) + 23*sqrt(5) - 3*sqrt(235 + 94*sqrt(5)) - 3)* 4^(2/5)/(20*((215*sqrt(5)*sqrt(235 + 94*sqrt(5)) - 10575 - 5405*sqrt(5) + 597*sqrt(235 + 94*sqrt(5)))/sqrt(235 + 94*sqrt(5)))^(2/5)) + (-1 + 2*sqrt(5))*4^(1/5)/(5*((215*sqrt(5)*sqrt(235 + 94*sqrt(5)) - 10575 - 5405*sqrt(5) + 597*sqrt(235 + 94*sqrt(5)))/sqrt(235 + 94*sqrt(5)))^(1/5)) - 2/5. - Robert Israel, Sep 04 2018
Equals 2^(1/4) / G(47), where G(n) is Ramanujan's class invariant G(n) = 2^(-1/4) * q(n)^(-1/24) * Product_{k>=0} (1 + q(n)^(2*k + 1)), with q(n) = exp(-Pi * sqrt(n)). - Hugo Pfoertner, Sep 15 2018
EXAMPLE
0.5764714296195506104863544001775785174773421821614790...
PROG
(PARI) p(x)=x^5+2*x^4+2*x^3+x^2-1; solve(x=0.3, 0.7, p(x))
CROSSREFS
Cf. A318732.
Sequence in context: A374967 A305200 A198730 * A195444 A114603 A348731
KEYWORD
nonn,cons
AUTHOR
Hugo Pfoertner, Sep 02 2018
STATUS
approved