login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114603
Decimal expansion of constant appearing in asymptotic variance of estimator for Pi in the Buffon-Laplace needle problem on a triangular grid with l/d=1.
0
0, 1, 5, 7, 6, 5, 8, 6, 3, 7, 3, 0, 3, 0, 4, 4, 2, 1, 6, 6, 7, 5, 6, 4, 9, 9, 4, 6, 5, 1, 1, 1, 7, 1, 8, 5, 3, 4, 3, 9, 7, 4, 1, 3, 8, 3, 7, 7, 2, 2, 4, 6, 0, 9, 4, 3, 3, 6, 0, 3, 6, 0, 0, 6, 9, 6, 8, 8, 4, 9, 8, 3, 5, 1, 0, 6, 2, 8, 6, 2, 2, 5, 8, 2, 0, 9, 9, 6, 5, 1, 0, 9, 5, 4, 4, 0, 0, 8, 8, 7, 8, 0, 0
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Buffon-Laplace Needle Problem
FORMULA
(2*(3*sqrt(3) - 4*Pi)*(3*sqrt(3) - Pi)*Pi^2*(-8 + sqrt(3) + 2*Pi)*(-24 + 3*sqrt(3) + 5*Pi))/(3*(-3618 + 864*sqrt(3) + 828*Pi + 354*sqrt(3)*Pi - 269*Pi^2 + 32*sqrt(3)*Pi^2)).
EXAMPLE
0.0157658637...
MATHEMATICA
RealDigits[(2*(3*Sqrt[3] - 4*Pi)*(3*Sqrt[3] - Pi)*Pi^2*(-8 + Sqrt[3] + 2*Pi)*(-24 + 3*Sqrt[3] + 5*Pi))/(3*(-3618 + 864*Sqrt[3] + 828*Pi + 354*Sqrt[3]*Pi - 269*Pi^2 + 32*Sqrt[3]*Pi^2)), 10, 100][[1]] (* Vaclav Kotesovec, Aug 15 2015 after Eric W. Weisstein *)
CROSSREFS
Sequence in context: A198730 A318733 A195444 * A348731 A346590 A100554
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Dec 14 2005
STATUS
approved