The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317885 Number of series-reduced free pure achiral multifunctions with one atom and n positions. 6
 1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS A series-reduced free pure achiral multifunction (SRAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty and non-unitary expression of the form h[g, ..., g] where h and g are SRAMs. The number of positions in a SRAM is the number of brackets [...] plus the number of o's. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..500 FORMULA a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1), d < n - k - 1} a(d). EXAMPLE The a(10) = 7 SRAMs:   o[o[o,o],o[o,o]]   o[o,o][o,o][o,o]   o[o,o][o,o,o,o,o]   o[o,o,o][o,o,o,o]   o[o,o,o,o][o,o,o]   o[o,o,o,o,o][o,o]   o[o,o,o,o,o,o,o,o] MATHEMATICA a[n_]:=If[n==1, 1, Sum[a[k]*Sum[a[d], {d, Most[Divisors[n-k-1]]}], {k, n-2}]]; Array[a, 12] PROG (PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018 (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 17:51 EDT 2022. Contains 353921 sequences. (Running on oeis4.)