login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317536
Expansion of 1/(1 + 1/(1 - x) - Product_{k>=1} (1 + x^k)).
4
1, 0, 0, 1, 1, 2, 4, 6, 10, 18, 30, 50, 86, 145, 245, 417, 705, 1193, 2024, 3427, 5804, 9836, 16660, 28220, 47811, 80991, 137197, 232423, 393729, 666982, 1129898, 1914078, 3242495, 5492898, 9305130, 15763154, 26703273, 45236138, 76631348, 129815818, 219911870, 372537244, 631089250
OFFSET
0,6
COMMENTS
Invert transform of A111133.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/(1 - Sum_{k>=1} A111133(k)*x^k).
MAPLE
seq(coeff(series(1/(1+1/(1-x)-mul(1+x^k, k=1..n)), x, n+1), x, n), n=0..50); # Muniru A Asiru, Jul 30 2018
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n<1, 1,
add(a(n-i)*(b(i)-1), i=1..n))
end:
seq(a(n), n=0..42); # Alois P. Heinz, Dec 16 2022
MATHEMATICA
nmax = 42; CoefficientList[Series[1/(1 + 1/(1 - x) - Product[(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 42; CoefficientList[Series[1/(1 - Sum[(PartitionsQ[k] - 1) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[(PartitionsQ[k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 30 2018
STATUS
approved