OFFSET
1,3
COMMENTS
Column 2 of A203181.
It seems that for n>=1 a(n) equals the number of (n-1)-length binary words avoiding runs of zeros of length 1 (mod 3). - Milan Janjic, Feb 28 2015
REFERENCES
D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version. See beta_n for this sequence. - N. J. A. Sloane, Jul 08 2014
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Matthias Beck and Neville Robbins, Variations on a Generatingfunctional Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence, arXiv:1403.0665 [math.NT], 2014.
Helena Verrill, On the Boundary of the Harter-Heighway dragon curve, arXiv:2407.17326 [math.CO], 2024.
FORMULA
Empirical G.f.: -x*(1+x^2) / ( -1+x+2*x^3 ). - R. J. Mathar, Jul 02 2013
EXAMPLE
All solutions for n=5:
..0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..0....1..0....1..0....1..0....1..0
..0..1....0..1....0..1....2..1....2..1....0..1
..1..0....1..2....1..0....0..1....0..2....1..2
..2..1....2..0....0..1....1..0....1..0....0..1
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 30 2011
STATUS
approved