login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317098 Number of series-reduced rooted trees with n unlabeled leaves where the number of distinct branches under each node is <= 2. 2
1, 1, 2, 5, 12, 31, 80, 214, 576, 1595, 4448, 12625, 36146, 104662, 305251, 897417, 2654072, 7895394, 23601441, 70871693, 213660535, 646484951, 1962507610, 5975425743, 18243789556, 55841543003, 171320324878, 526738779846, 1622739134873, 5008518981670 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

There can be more than two branches as long as there are not three distinct branches.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

EXAMPLE

The a(5) = 12 trees:

  (o(o(o(oo))))

  (o(o(ooo)))

  (o((oo)(oo)))

  (o(oo(oo)))

  (o(oooo))

  ((oo)(o(oo)))

  ((oo)(ooo))

  (oo(o(oo)))

  (oo(ooo))

  (o(oo)(oo))

  (ooo(oo))

  (ooooo)

MATHEMATICA

semisameQ[u_]:=Length[Union[u]]<=2;

nms[n_]:=nms[n]=If[n==1, {{1}}, Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]], semisameQ], {ptn, Rest[IntegerPartitions[n]]}]];

Table[Length[nms[n]], {n, 10}]

PROG

(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 19 2018

CROSSREFS

Cf. A000081, A000598, A001190, A055277, A111299, A292050, A298204, A301344, A317097.

Sequence in context: A290616 A110035 A000635 * A238427 A077556 A076906

Adjacent sequences:  A317095 A317096 A317097 * A317099 A317100 A317101

KEYWORD

nonn

AUTHOR

Gus Wiseman, Aug 01 2018

EXTENSIONS

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 09:22 EDT 2021. Contains 346422 sequences. (Running on oeis4.)