login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317065
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 25, 24, 1, 1, 82, 139, 139, 82, 1, 1, 272, 818, 1595, 818, 272, 1, 1, 908, 4869, 17947, 17947, 4869, 908, 1, 1, 3076, 29339, 207116, 384535, 207116, 29339, 3076, 1, 1, 10444, 177688, 2403703, 8450612, 8450612, 2403703
OFFSET
1,5
COMMENTS
Table starts
.1.....1.......1.........1...........1..............1................1
.1.....4.......8........24..........82............272..............908
.1.....8......25.......139.........818...........4869............29339
.1....24.....139......1595.......17947.........207116..........2403703
.1....82.....818.....17947......384535........8450612........186574154
.1...272....4869....207116.....8450612......354399907......14920072888
.1...908...29339...2403703...186574154....14920072888....1197129513001
.1..3076..177688..27979008..4130997988...629855730272...96317261216226
.1.10444.1078090.325990496.91552460948.26612973830635.7756014658872472
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 14] for n>16
k=4: [order 38] for n>40
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..1..1..0. .0..0..1..1. .0..1..1..1
..1..1..0..1. .1..0..0..0. .0..1..1..0. .1..1..0..0. .1..1..0..0
..1..0..0..1. .0..0..0..1. .1..1..0..1. .0..0..1..0. .1..0..0..1
..1..0..0..1. .1..1..1..0. .0..0..0..0. .1..1..1..1. .0..1..1..0
..0..1..0..1. .0..1..0..1. .1..0..1..1. .0..0..1..0. .0..1..0..1
CROSSREFS
Column 2 is A303882.
Column 3 is A305680.
Column 4 is A305681.
Sequence in context: A305954 A317215 A305685 * A316932 A317703 A055107
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 20 2018
STATUS
approved