login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305954
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 23, 24, 1, 1, 82, 107, 107, 82, 1, 1, 272, 537, 959, 537, 272, 1, 1, 908, 2800, 8433, 8433, 2800, 908, 1, 1, 3076, 14652, 76951, 126733, 76951, 14652, 3076, 1, 1, 10444, 77128, 705763, 1969026, 1969026, 705763, 77128, 10444, 1
OFFSET
1,5
COMMENTS
Table starts
.1.....1......1........1..........1.............1...............1
.1.....4......8.......24.........82...........272.............908
.1.....8.....23......107........537..........2800...........14652
.1....24....107......959.......8433.........76951..........705763
.1....82....537.....8433.....126733.......1969026........30700722
.1...272...2800....76951....1969026......52618569......1406191296
.1...908..14652...705763...30700722....1406191296.....64233268442
.1..3076..77128..6501334..480588948...37746118432...2949134027463
.1.10444.406622.59966772.7529843048.1013991166787.135468194522667
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 16] for n>17
k=4: [order 49] for n>51
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..0. .0..1..0..1. .0..0..0..1. .0..1..0..1
..1..1..1..1. .0..1..1..1. .1..1..0..1. .0..0..0..1. .1..0..0..1
..1..0..1..1. .0..1..1..0. .1..0..1..0. .1..1..1..0. .0..1..0..1
..1..0..1..1. .0..0..1..1. .1..0..0..1. .0..1..1..0. .1..1..0..1
..0..1..0..0. .1..0..0..0. .0..1..1..0. .0..1..1..0. .0..0..1..0
CROSSREFS
Column 2 is A303882.
Sequence in context: A317271 A304419 A316244 * A317215 A305685 A317065
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 15 2018
STATUS
approved