login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317215
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 23, 24, 1, 1, 82, 107, 107, 82, 1, 1, 272, 537, 959, 537, 272, 1, 1, 908, 2800, 8433, 8433, 2800, 908, 1, 1, 3076, 14652, 76951, 127358, 76951, 14652, 3076, 1, 1, 10444, 77128, 705763, 1987026, 1987026, 705763, 77128, 10444, 1
OFFSET
1,5
COMMENTS
Table starts
.1.....1......1........1..........1.............1...............1
.1.....4......8.......24.........82...........272.............908
.1.....8.....23......107........537..........2800...........14652
.1....24....107......959.......8433.........76951..........705763
.1....82....537.....8433.....127358.......1987026........31138620
.1...272...2800....76951....1987026......53479785......1441577878
.1...908..14652...705763...31138620....1441577878.....66735041323
.1..3076..77128..6501334..489866621...39018757534...3103003384185
.1.10444.406622.59966772.7714180199.1057115569193.144406060742969
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 16] for n>17
k=4: [order 49] for n>51
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..1..0. .0..0..0..1
..1..0..0..1. .1..0..1..0. .1..1..1..0. .1..1..0..1. .1..1..0..1
..1..0..0..0. .0..1..0..1. .0..1..1..0. .0..1..1..1. .1..0..1..1
..1..0..0..1. .1..0..1..1. .1..1..0..0. .1..0..0..0. .0..1..0..0
..0..1..1..0. .1..0..1..0. .0..0..0..1. .0..1..0..1. .1..0..0..1
CROSSREFS
Column 2 is A303882.
Column 3 is A305949.
Column 4 is A305950.
Sequence in context: A304419 A316244 A305954 * A305685 A317065 A316932
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 23 2018
STATUS
approved