login
A317703
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 25, 24, 1, 1, 82, 143, 143, 82, 1, 1, 272, 851, 1719, 851, 272, 1, 1, 908, 5114, 20235, 20235, 5114, 908, 1, 1, 3076, 31197, 242908, 468002, 242908, 31197, 3076, 1, 1, 10444, 191330, 2937685, 11013057, 11013057, 2937685
OFFSET
1,5
COMMENTS
Table starts
.1.....1.......1.........1............1..............1.................1
.1.....4.......8........24...........82............272...............908
.1.....8......25.......143..........851...........5114.............31197
.1....24.....143......1719........20235.........242908...........2937685
.1....82.....851.....20235.......468002.......11013057.........261020405
.1...272....5114....242908.....11013057......508895558.......23660712291
.1...908...31197...2937685....261020405....23660712291.....2157266427366
.1..3076..191330..35648580...6206695998..1103426578662...197276106238236
.1.10444.1175122.433015180.147728990014.51504728212214.18056111727655363
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 13] for n>15
k=4: [order 34] for n>35
k=5: [order 87] for n>90
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..1..1..0. .0..0..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..0. .0..1..0..1. .1..1..1..0. .1..0..1..0. .0..1..0..1
..1..0..0..0. .0..1..0..1. .0..0..1..0. .0..0..1..1. .0..0..0..0
..1..0..1..1. .0..0..0..0. .0..1..1..1. .1..1..0..1. .1..0..1..1
..1..0..1..1. .1..1..1..1. .0..1..0..0. .0..0..0..1. .0..1..1..0
CROSSREFS
Column 2 is A303882.
Column 3 is A316927.
Column 4 is A316928.
Sequence in context: A305685 A317065 A316932 * A055107 A297193 A272867
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 04 2018
STATUS
approved