login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316569
a(n) = Jacobi (or Kronecker) symbol (n, 15).
7
0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0
OFFSET
0,1
COMMENTS
Period 15: repeat [0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1].
Also a(n) = Kronecker(-15, n).
This sequence is one of the three non-principal real Dirichlet characters modulo 15. The other two are Jacobi or Kronecker symbols (n, 45) (or (45, n)) and (n, 75) (or (-75, n)).
Note that (Sum_{i=0..14} i*a(i))/(-15) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-15)).
LINKS
Eric Weisstein's World of Mathematics, Kronecker Symbol
FORMULA
a(n) = 1 for n == 1, 2, 4, 8 (mod 15); -1 for n == 7, 11, 13, 14 (mod 15); 0 for n that are not coprime with 15.
Completely multiplicative with a(p) = a(p mod 15) for primes p.
a(n) = A102283(n)*A080891(n).
a(n) = a(n+15) = -a(-n) for all n in Z.
From Chai Wah Wu, Feb 16 2021: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-5) + a(n-7) - a(n-8) for n > 7.
G.f.: (x^7 - x^5 + 2*x^4 - x^3 + x)/(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1). (End)
MATHEMATICA
Array[ JacobiSymbol[#, 15] &, 90, 0] (* Robert G. Wilson v, Aug 06 2018 *)
PadRight[{}, 100, {0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1}] (* Harvey P. Dale, Feb 20 2023 *)
PROG
(PARI) a(n) = kronecker(n, 15)
(Magma) [KroneckerSymbol(-15, n): n in [0..100]]; // Vincenzo Librandi, Aug 28 2018
CROSSREFS
Cf. A035175 (inverse Moebius transform).
Kronecker symbols: A063524 ((n, 0) or (0, n)), A000012 ((n, 1) or (1, n)), A091337 ((n, 2) or (2, n) or (n, 8) or (8, n)), A102283 ((n, 3) or (-3, n)), A000035 ((n, 4) or (4, n) or (n, 16) or (16, n)), A080891 ((n, 5) or (5, n)), A109017 ((n, 6) or (-6, n)), A175629 ((n, 7) or (-7, n)), A011655 ((n, 9) or (9, n)), A011582 ((n, 11) or (-11, n)), A134667 ((n, 12) or (-12, n)), A011583 ((n, 13) or (13, n)), this sequence ((n, 15) or (-15, n)).
Sequence in context: A372728 A217831 A010060 * A284848 A286484 A118247
KEYWORD
sign,easy,mult
AUTHOR
Jianing Song, Aug 05 2018
STATUS
approved