login
A316437
Take the integer partition with Heinz number n, divide all parts by the GCD of the parts, then take the Heinz number of the resulting partition.
5
1, 2, 2, 4, 2, 6, 2, 8, 4, 10, 2, 12, 2, 14, 15, 16, 2, 18, 2, 20, 6, 22, 2, 24, 4, 26, 8, 28, 2, 30, 2, 32, 33, 34, 35, 36, 2, 38, 10, 40, 2, 42, 2, 44, 45, 46, 2, 48, 4, 50, 51, 52, 2, 54, 55, 56, 14, 58, 2, 60, 2, 62, 12, 64, 6, 66, 2, 68, 69, 70, 2, 72, 2, 74, 75, 76, 77, 78, 2, 80, 16, 82, 2, 84, 85, 86, 22, 88, 2, 90, 15
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is idempotent, meaning a(a(n)) = a(n) for all n.
All terms belong to A289509.
MATHEMATICA
f[n_]:=If[n==1, 1, With[{pms=Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]}, Times@@Prime/@(pms/GCD@@pms)]];
Table[f[n], {n, 100}]
PROG
(PARI) A316437(n) = if(1==n, 1, my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); factorback(vector(#f~, k, prime(pis[k]/g)^es[k]))); \\ Antti Karttunen, Aug 06 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 03 2018
EXTENSIONS
More terms from Antti Karttunen, Aug 06 2018
STATUS
approved