login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Take the integer partition with Heinz number n, divide all parts by the GCD of the parts, then take the Heinz number of the resulting partition.
5

%I #10 Aug 26 2018 12:24:17

%S 1,2,2,4,2,6,2,8,4,10,2,12,2,14,15,16,2,18,2,20,6,22,2,24,4,26,8,28,2,

%T 30,2,32,33,34,35,36,2,38,10,40,2,42,2,44,45,46,2,48,4,50,51,52,2,54,

%U 55,56,14,58,2,60,2,62,12,64,6,66,2,68,69,70,2,72,2,74,75,76,77,78,2,80,16,82,2,84,85,86,22,88,2,90,15

%N Take the integer partition with Heinz number n, divide all parts by the GCD of the parts, then take the Heinz number of the resulting partition.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%C This sequence is idempotent, meaning a(a(n)) = a(n) for all n.

%C All terms belong to A289509.

%H Antti Karttunen, <a href="/A316437/b316437.txt">Table of n, a(n) for n = 1..65537</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Idempotence">Idempotence</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%t f[n_]:=If[n==1,1,With[{pms=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Times@@Prime/@(pms/GCD@@pms)]];

%t Table[f[n],{n,100}]

%o (PARI) A316437(n) = if(1==n,1,my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); factorback(vector(#f~, k, prime(pis[k]/g)^es[k]))); \\ _Antti Karttunen_, Aug 06 2018

%Y Cf. A000720, A056239, A289508, A289509, A290103, A296150, A316430, A316431, A316432, A316438.

%K nonn

%O 1,2

%A _Gus Wiseman_, Jul 03 2018

%E More terms from _Antti Karttunen_, Aug 06 2018