login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309751
Approximation of the 2-adic integer arctan(2) up to 2^n.
3
0, 0, 2, 2, 10, 10, 10, 74, 202, 202, 714, 714, 714, 714, 8906, 25290, 58058, 123594, 254666, 516810, 516810, 1565386, 1565386, 5759690, 14148298, 14148298, 47702730, 47702730, 181920458, 450355914, 987226826, 987226826, 3134710474, 7429677770, 7429677770
OFFSET
0,3
COMMENTS
arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
FORMULA
a(n) = (Sum_{i=0..floor(n/2)-1} (-1)^i*2^(2*i+1)/(2*i+1)) mod 2^n.
EXAMPLE
a(2) = 2^1 mod 2^2 = 2;
a(3) = 2^1 mod 2^3 = 2;
a(4) = (2^1 - 2^3/3) mod 2^4 = 2;
a(5) = (2^1 - 2^3/3) mod 2^5 = 10;
a(6) = (2^1 - 2^3/3 + 2^5/5) mod 2^6 = 10;
a(7) = (2^1 - 2^3/3 + 2^5/5) mod 2^7 = 74.
PROG
(PARI) a(n) = lift(sum(i=0, n/2-1, Mod((-1)^i*2^(2*i+1)/(2*i+1), 2^n)))
CROSSREFS
Sequence in context: A141610 A019241 A168295 * A249152 A216708 A032005
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 15 2019
EXTENSIONS
Offset corrected by Georg Fischer, Jun 22 2022
STATUS
approved