login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032005
"AFK" (ordered, size, unlabeled) transform of 2,2,2,2,...
6
1, 2, 2, 10, 10, 18, 66, 74, 122, 178, 610, 666, 1146, 1586, 2450, 6778, 8026, 12738, 18258, 27194, 36938, 96226, 110578, 177930, 246474, 368354, 491426, 717418, 1543978, 1874418, 2855394, 3985322, 5765786, 7791250, 11066626, 14636538, 29870490, 35722514
OFFSET
0,2
COMMENTS
Number of compositions of n into distinct parts of 2 kinds. a(3) = 10: 3, 3', 21, 21', 2'1, 2'1', 12, 12', 1'2, 1'2'. - Alois P. Heinz, Sep 05 2015
LINKS
C. G. Bower, Transforms (2)
Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
MAPLE
b:= proc(n, i, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, b(n, i-1, p)+
`if`(i>n, 0, 2*b(n-i, i-1, p+1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 05 2015
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p] + If[i > n, 0, 2*b[n - i, i - 1, p + 1]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 40] (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
PROG
(PARI) seq(n)={apply(p->subst(serlaplace(p), y, 1), Vec(prod(k=1, n, 1 + 2*x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Jun 21 2018
CROSSREFS
a(n) = 2 * A032043(n) - 2 for n>0.
Sequence in context: A309751 A249152 A216708 * A147801 A367545 A263053
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 05 2015
STATUS
approved