login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032007
"AFK" (ordered, size, unlabeled) transform of 1,2,3,4,...
4
1, 1, 2, 7, 10, 25, 68, 111, 208, 435, 1218, 1773, 3586, 6077, 12156, 31961, 47624, 86825, 151962, 265525, 469610, 1242607, 1750108, 3217663, 5263928, 9205197, 14713474, 26440503, 63610938, 90877893, 159360628, 258871127, 431309688, 687140639, 1134231986
OFFSET
0,3
COMMENTS
Sum of products of parts in all compositions of n into distinct parts. - Vladeta Jovovic, Feb 21 2005
Number of compositions of n into distinct parts if there are i kinds of part i. a(3) = 7: 3, 3', 3'', 21, 2'1, 12, 12'.
LINKS
C. G. Bower, Transforms (2)
MAPLE
b:= proc(n, i, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, b(n, i-1, p)+
`if`(i>n, 0, i*b(n-i, i-1, p+1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 05 2015
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p] + If[i > n, 0, i*b[n - i, i - 1, p + 1]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 40] (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
PROG
(PARI) seq(n)={apply(p->subst(serlaplace(p), y, 1), Vec(prod(k=1, n, 1 + k*x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Jun 21 2018
CROSSREFS
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 05 2015
STATUS
approved