login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309749
Primes p such that the base-10 concatenations (p+1)||p and (p+1)||(p+1)||p are both prime.
1
3, 197, 263, 281, 443, 881, 887, 947, 2111, 2129, 2237, 2699, 2741, 2897, 3251, 3539, 3821, 3881, 4049, 4451, 4523, 4787, 6257, 6389, 8609, 8741, 10163, 10193, 10247, 11027, 13187, 14591, 14897, 16193, 16901, 17027, 18797, 19319, 19379, 20147, 20681, 21563, 21647, 22073, 22259
OFFSET
1,1
COMMENTS
a(n) == 5 (mod 6) for n >= 2.
LINKS
EXAMPLE
a(3) = 263 is in the sequence because 263, 264263 and 264264263 are all prime.
MAPLE
filter:= proc(n) local v, w, q;
if not isprime(n) then return false fi;
v:= 10^(1+ilog10(n));
q:= v*(n+1)+n;
if not isprime(q) then return false fi;
isprime((10^(1+ilog10(q))+v)*(n+1)+n)
end proc:
select(filter, [3, seq(i, i=5..100000, 6)]);
MATHEMATICA
pcQ[n_]:=Module[{idn=IntegerDigits[n], idn2=IntegerDigits[n+1]}, AllTrue[ {FromDigits[ Join[ idn2, idn]], FromDigits[ Join[idn2, idn2, idn]]}, PrimeQ]]; Select[Prime[Range[2500]], pcQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 11 2019 *)
PROG
(Magma) [p:p in PrimesUpTo(23000)|IsPrime(Seqint(Intseq(p) cat Intseq(p+1))) and IsPrime(Seqint(Intseq(p) cat Intseq(p+1) cat Intseq(p+1)))]; // Marius A. Burtea, Aug 27 2019
CROSSREFS
Cf. A309935.
Sequence in context: A093978 A101382 A000724 * A209120 A336250 A374514
KEYWORD
nonn,base
AUTHOR
Robert Israel, Aug 26 2019
STATUS
approved