login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309439
Number of prime parts in the partitions of n into 10 parts.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 11, 17, 30, 45, 72, 104, 157, 210, 298, 396, 537, 698, 924, 1176, 1521, 1909, 2418, 2991, 3729, 4560, 5610, 6795, 8254, 9906, 11919, 14180, 16908, 19972, 23615, 27706, 32527, 37917, 44227, 51267, 59425, 68525, 79007
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (A010051(r) + A010051(q) + A010051(p) + A010051(o) + A010051(m) + A010051(l) + A010051(k) + A010051(j) + A010051(i) + A010051(n-i-j-k-l-m-o-p-q-r)).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[k] - PrimePi[k - 1]) + (PrimePi[l] - PrimePi[l - 1]) + (PrimePi[m] - PrimePi[m - 1]) + (PrimePi[o] - PrimePi[o - 1]) + (PrimePi[p] - PrimePi[p - 1]) + (PrimePi[q] - PrimePi[q - 1]) + (PrimePi[r] - PrimePi[r - 1]) + (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
Table[Count[Flatten[IntegerPartitions[n, {10}]], _?PrimeQ], {n, 0, 50}] (* Harvey P. Dale, Dec 26 2020 *)
CROSSREFS
Sequence in context: A309436 A309437 A309438 * A108542 A006450 A085918
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 03 2019
STATUS
approved