login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309436
Number of prime parts in the partitions of n into 7 parts.
2
0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 11, 17, 30, 45, 64, 87, 123, 160, 217, 275, 356, 441, 559, 681, 844, 1016, 1236, 1470, 1767, 2075, 2464, 2871, 3366, 3892, 4526, 5188, 5984, 6820, 7804, 8843, 10056, 11327, 12809, 14363, 16144, 18023, 20168, 22414, 24972
OFFSET
0,10
FORMULA
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} (A010051(i) + A010051(j) + A010051(k) + A010051(l) + A010051(m) + A010051(o) + A010051(n-i-j-k-l-m-o)).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[k] - PrimePi[k - 1]) + (PrimePi[l] - PrimePi[l - 1]) + (PrimePi[m] - PrimePi[m - 1]) + (PrimePi[o] - PrimePi[o - 1]) + (PrimePi[n - i - j - k - l - m - o] - PrimePi[n - i - j - k - l - m - o - 1]), {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]
CROSSREFS
Sequence in context: A278053 A174916 A309433 * A309437 A309438 A309439
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 03 2019
STATUS
approved