

A085918


Primes p such that for some k the number of terms > 0 and < 1 in the Farey sequence of order k is p.


0



3, 5, 11, 17, 31, 41, 71, 79, 101, 127, 139, 149, 179, 199, 211, 229, 241, 269, 277, 307, 359, 383, 431, 449, 541, 773, 829, 881, 1259, 1307, 1327, 1493, 1831, 1933, 2141, 2551, 3373, 3947, 4127, 4831, 4957, 5021, 5153, 5323, 5431, 5569, 5813, 6091, 6329
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Or, prime numbers of the form Sum(phi(j), j=2..n).  Jorge Coveiro, Dec 22 2004. Examples: phi(2)+phi(3)= 3; phi(2)+phi(3)+phi(4)= 5; phi(2)+phi(3)+phi(4)+phi(5)+phi(6)= 11; phi(2)+phi(3)+phi(4)+phi(5)+phi(6)+phi(7)= 17.
Does this sequence have an infinite number of terms?


LINKS

Table of n, a(n) for n=1..49.


EXAMPLE

The Farey sequence of order 4 is {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1}. The number of terms > 0 and < 1 is 5, which is prime, so 5 is a member.


PROG

(PARI) \ Farey sequence of order n fareycountp(n) = { for(x=2, n, y = farey(x); if(isprime(y), print1(y", ")); ) } farey(n) = { c=1; m=n*(n2)+2; a=vector(m); for(x=1, n, for(y=x, n, v = x/y; if(v<1, c++; a[c]=v; ) ) ); a = vecsort(a); c=0; for(x=2, m, if(a[x]<>a[x1] & a[x]<>0, \ print1(a[x]", "); c++; ) ); return(c) }


CROSSREFS

Cf. A078334, A005728, A101300, A000010.
Sequence in context: A309439 A108542 A006450 * A267094 A336372 A146622
Adjacent sequences: A085915 A085916 A085917 * A085919 A085920 A085921


KEYWORD

easy,nonn


AUTHOR

Cino Hilliard, Aug 16 2003


EXTENSIONS

Definition corrected by Jonathan Sondow, Apr 21 2005


STATUS

approved



