OFFSET
1,1
COMMENTS
Or, prime numbers of the form Sum_{j=2..k} phi(j). - Jorge Coveiro, Dec 22 2004. Examples: phi(2)+phi(3) = 3; phi(2)+phi(3)+phi(4) = 5; phi(2)+phi(3)+phi(4)+phi(5)+phi(6) = 11; phi(2)+phi(3)+phi(4)+phi(5)+phi(6)+phi(7) = 17.
Does this sequence have an infinite number of terms?
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
The Farey sequence of order 4 is {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1}. The number of terms > 0 and < 1 is 5, which is prime, so 5 is a term.
MATHEMATICA
Select[Accumulate[Table[EulerPhi[k], {k, 2, 150}]], PrimeQ] (* Amiram Eldar, Jul 06 2024 *)
PROG
(PARI) /* Farey sequence of order n */ fareycountp(n) = { for(x=2, n, y = farey(x); if(isprime(y), print1(y", ")); ) }
farey(n) = { c=1; m=n*(n-2)+2; a=vector(m); for(x=1, n, for(y=x, n, v = x/y; if(v<1, c++; a[c]=v; ) ) ); a = vecsort(a); c=0; for(x=2, m, if(a[x]<>a[x-1] & a[x]<>0, \ print1(a[x]", "); c++; ) ); return(c) }
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Aug 16 2003
EXTENSIONS
Definition corrected by Jonathan Sondow, Apr 21 2005
STATUS
approved