Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 26 2020 18:16:01
%S 0,0,0,0,0,0,0,0,0,0,0,1,3,5,11,17,30,45,72,104,157,210,298,396,537,
%T 698,924,1176,1521,1909,2418,2991,3729,4560,5610,6795,8254,9906,11919,
%U 14180,16908,19972,23615,27706,32527,37917,44227,51267,59425,68525,79007
%N Number of prime parts in the partitions of n into 10 parts.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (A010051(r) + A010051(q) + A010051(p) + A010051(o) + A010051(m) + A010051(l) + A010051(k) + A010051(j) + A010051(i) + A010051(n-i-j-k-l-m-o-p-q-r)).
%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[k] - PrimePi[k - 1]) + (PrimePi[l] - PrimePi[l - 1]) + (PrimePi[m] - PrimePi[m - 1]) + (PrimePi[o] - PrimePi[o - 1]) + (PrimePi[p] - PrimePi[p - 1]) + (PrimePi[q] - PrimePi[q - 1]) + (PrimePi[r] - PrimePi[r - 1]) + (PrimePi[n - i - j - k - l - m - o - p - q - r] - PrimePi[n - i - j - k - l - m - o - p - q - r - 1]), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
%t Table[Count[Flatten[IntegerPartitions[n,{10}]],_?PrimeQ],{n,0,50}] (* _Harvey P. Dale_, Dec 26 2020 *)
%Y Cf. A010051, A259201.
%K nonn
%O 0,13
%A _Wesley Ivan Hurt_, Aug 03 2019