The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309369 a(n) = Sum_{d|n} phi(n/d)^d, where phi = Euler totient function (A000010). 7
 1, 2, 3, 4, 5, 8, 7, 10, 15, 22, 11, 34, 13, 44, 105, 42, 17, 116, 19, 314, 357, 112, 23, 426, 1045, 158, 747, 1474, 29, 5290, 31, 594, 3069, 274, 24185, 6082, 37, 344, 9945, 67922, 41, 63542, 43, 12170, 303225, 508, 47, 74834, 279979, 1050022, 135201, 29098, 53, 309872, 4294345 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..5000 FORMULA G.f.: Sum_{k>=1} phi(k)*x^k/(1 - phi(k)*x^k). L.g.f.: -log(Product_{k>=1} (1 - phi(k)*x^k)^(1/k)). a(p) = p for p prime. a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(gcd(k, n) - 1). - Seiichi Manyama, Mar 13 2021 MATHEMATICA Table[Sum[EulerPhi[n/d]^d, {d, Divisors[n]}], {n, 1, 55}] nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest nmax = 55; CoefficientList[Series[-Log[Product[(1 - EulerPhi[k] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest PROG (PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-1)); \\ Seiichi Manyama, Mar 13 2021 CROSSREFS Cf. A000010, A055225, A164941, A264782, A279789. Sequence in context: A158979 A233249 A330573 * A091893 A074756 A240221 Adjacent sequences: A309366 A309367 A309368 * A309370 A309371 A309372 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jul 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 03:28 EDT 2024. Contains 371696 sequences. (Running on oeis4.)