login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} phi(n/d)^d, where phi = Euler totient function (A000010).
7

%I #15 Mar 13 2021 10:52:16

%S 1,2,3,4,5,8,7,10,15,22,11,34,13,44,105,42,17,116,19,314,357,112,23,

%T 426,1045,158,747,1474,29,5290,31,594,3069,274,24185,6082,37,344,9945,

%U 67922,41,63542,43,12170,303225,508,47,74834,279979,1050022,135201,29098,53,309872,4294345

%N a(n) = Sum_{d|n} phi(n/d)^d, where phi = Euler totient function (A000010).

%H Seiichi Manyama, <a href="/A309369/b309369.txt">Table of n, a(n) for n = 1..5000</a>

%F G.f.: Sum_{k>=1} phi(k)*x^k/(1 - phi(k)*x^k).

%F L.g.f.: -log(Product_{k>=1} (1 - phi(k)*x^k)^(1/k)).

%F a(p) = p for p prime.

%F a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(gcd(k, n) - 1). - _Seiichi Manyama_, Mar 13 2021

%t Table[Sum[EulerPhi[n/d]^d, {d, Divisors[n]}], {n, 1, 55}]

%t nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t nmax = 55; CoefficientList[Series[-Log[Product[(1 - EulerPhi[k] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest

%o (PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-1)); \\ _Seiichi Manyama_, Mar 13 2021

%Y Cf. A000010, A055225, A164941, A264782, A279789.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Jul 25 2019