login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264782
a(n) = Sum_{d|n} möbius(d)^(n/d).
3
1, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 8, 0, 2, 0
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n} möbius(d)^(n/d).
For odd n, a(n)=0.
For n = 2 * p1^k1 * p2^k2 * ... * pr^kr, a(n) = 2^r.
For n = 2^m * p1^k1 * p2^k2 * ... * pr^kr, a(n) = 2^(r+1) if m > 1.
a(2n) = A034444(n) for n > 1.
From Gevorg Hmayakyan, Dec 31 2016: (Start)
If b(n) = Sum_{d|n} möbius(d)^d, then b(n) = (A209229(n)+1)*((-1)^n + 1)/2*a(2*n)/2, for n > 1.
Dirichlet g.f.: -1 + 2^(-s) + (2^(-s) Zeta[s]^2)/Zeta[2s]. (End)
Sum_{k=1..n} a(k) ~ 3*n / Pi^2 * (log(n) - 1 + 2*gamma - log(2) - 12*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - mu(k)*x^k). - Ilya Gutkovskiy, May 23 2019
EXAMPLE
a(1) = 1, a(p) = mu(1)^p + mu(p)^1 = 0.
a(p1*p2) = mu(1)^p1*p2 + mu(p1)^p2 + mu(p2)^p1 + mu(p1*p2) = 1+(-1)+(-1)+1 = 0.
a(2*p) = mu(1)^2*p + mu(2)^p + mu(p)^2 + mu(2*p) = 1+(-1)+1+1 = 2.
MATHEMATICA
Table[Sum[MoebiusMu[d]^(n/d), {d, Divisors@ n}], {n, 87}] (* Michael De Vlieger, Nov 25 2015 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)^d);
(Haskell)
a264782 n = sum $ zipWith (^) (map a008683 divs) (reverse divs)
where divs = a027750_row n
-- Reinhard Zumkeller, Dec 19 2015
(Perl) use ntheory ":all"; sub a264782 { my $n=shift; divisor_sum($n, sub { moebius($_[0]) ** ($n/$_[0]) }); } # Dana Jacobsen, Dec 29 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gevorg Hmayakyan, Nov 24 2015
STATUS
approved