login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144078
a(n) = the number of digits in the binary representation of n that differ from the corresponding digit in the binary reversal of n. (I.e., a(n) = number of 1's in n XOR A030101(n).)
4
0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 2, 4, 2, 2, 0, 2, 0, 4, 2, 2, 0, 4, 2, 4, 2, 2, 0, 4, 2, 2, 0, 2, 0, 4, 2, 4, 2, 6, 4, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 2, 0, 6, 4, 4, 2, 6, 4, 4, 2, 4, 2, 2, 0, 2, 0, 4, 2, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 6, 4, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 2, 0, 6, 4, 4, 2, 4, 2
OFFSET
1,2
COMMENTS
a(n) + A144079(n) = A070939(n), the number of binary digits in n.
LINKS
FORMULA
From Rémy Sigrist, Oct 07 2018: (Start)
a(n) = 0 iff n is a binary palindrome (A006995).
a(A143960(n)) = 2*n (in fact A143960(n) is the least k such that a(k) = 2*n).
(End)
EXAMPLE
20 in binary is 10100. Compare this with its digit reversal, 00101. XOR each pair of corresponding digits: 1 XOR 0 = 1, 0 XOR 0 = 0, 1 XOR 1 = 0, 0 XOR 0 = 0, 0 XOR 1 = 1. There are two bit pairs that differ, so a(20) = 2.
MAPLE
A144078 := proc(n) local a, dgs, i; a := 0 ; dgs := convert(n, base, 2) ; for i from 1 to nops(dgs) do if op(i, dgs)+op(-i, dgs) = 1 then a := a+1 ; fi; od; RETURN(a) ; end: for n from 1 to 240 do printf("%d, ", A144078(n)) ; od: # R. J. Mathar, Sep 14 2008
MATHEMATICA
brd[n_]:=Module[{idn2=IntegerDigits[n, 2]}, Count[Transpose[{idn2, Reverse[ idn2]}], _?(#[[1]]!=#[[2]]&)]]; Array[brd, 110] (* Harvey P. Dale, May 09 2016 *)
PROG
(PARI) a(n) = hammingweight(bitxor(n, fromdigits(Vecrev(binary(n)), 2))) \\ Rémy Sigrist, Oct 07 2018
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Sep 09 2008
EXTENSIONS
More terms from R. J. Mathar, Sep 14 2008
STATUS
approved