The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144078 a(n) = the number of digits in the binary representation of n that differ from the corresponding digit in the binary reversal of n. (I.e., a(n) = number of 1's in n XOR A030101(n).) 4
 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 2, 4, 2, 2, 0, 2, 0, 4, 2, 2, 0, 4, 2, 4, 2, 2, 0, 4, 2, 2, 0, 2, 0, 4, 2, 4, 2, 6, 4, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 2, 0, 6, 4, 4, 2, 6, 4, 4, 2, 4, 2, 2, 0, 2, 0, 4, 2, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 6, 4, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 6, 4, 2, 0, 4, 2, 4, 2, 2, 0, 6, 4, 4, 2, 4, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) + A144079(n) = A070939(n), the number of binary digits in n. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 FORMULA From Rémy Sigrist, Oct 07 2018: (Start) a(n) = 0 iff n is a binary palindrome (A006995). a(A143960(n)) = 2*n (in fact A143960(n) is the least k such that a(k) = 2*n). (End) EXAMPLE 20 in binary is 10100. Compare this with its digit reversal, 00101. XOR each pair of corresponding digits: 1 XOR 0 = 1, 0 XOR 0 = 0, 1 XOR 1 = 0, 0 XOR 0 = 0, 0 XOR 1 = 1. There are two bit pairs that differ, so a(20) = 2. MAPLE A144078 := proc(n) local a, dgs, i; a := 0 ; dgs := convert(n, base, 2) ; for i from 1 to nops(dgs) do if op(i, dgs)+op(-i, dgs) = 1 then a := a+1 ; fi; od; RETURN(a) ; end: for n from 1 to 240 do printf("%d, ", A144078(n)) ; od: # R. J. Mathar, Sep 14 2008 MATHEMATICA brd[n_]:=Module[{idn2=IntegerDigits[n, 2]}, Count[Transpose[{idn2, Reverse[ idn2]}], _?(#[[1]]!=#[[2]]&)]]; Array[brd, 110] (* Harvey P. Dale, May 09 2016 *) PROG (PARI) a(n) = hammingweight(bitxor(n, fromdigits(Vecrev(binary(n)), 2))) \\ Rémy Sigrist, Oct 07 2018 CROSSREFS Cf. A006995, A030101, A143960, A144079. Sequence in context: A096158 A264782 A053471 * A277158 A318282 A281009 Adjacent sequences:  A144075 A144076 A144077 * A144079 A144080 A144081 KEYWORD base,nonn AUTHOR Leroy Quet, Sep 09 2008 EXTENSIONS More terms from R. J. Mathar, Sep 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 02:01 EDT 2020. Contains 334581 sequences. (Running on oeis4.)