login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309192
a(n) = Sum_{k=1..n} mu(k)^2 * k * floor(n/k).
2
1, 4, 8, 11, 17, 29, 37, 40, 44, 62, 74, 86, 100, 124, 148, 151, 169, 181, 201, 219, 251, 287, 311, 323, 329, 371, 375, 399, 429, 501, 533, 536, 584, 638, 686, 698, 736, 796, 852, 870, 912, 1008, 1052, 1088, 1112, 1184, 1232, 1244, 1252, 1270, 1342, 1384, 1438, 1450, 1522
OFFSET
1,2
COMMENTS
Partial sums of A048250.
LINKS
FORMULA
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k)^2 * k * x^k/(1 - x^k).
a(n) ~ n^2/2. - Vaclav Kotesovec, Jul 16 2019
MATHEMATICA
Table[Sum[MoebiusMu[k]^2 k Floor[n/k], {k, 1, n}], {n, 1, 55}]
nmax = 55; CoefficientList[Series[1/(1 - x) Sum[MoebiusMu[k]^2 k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Accumulate[Table[Total[Select[Divisors[n], SquareFreeQ]], {n, 1, 100}]] (* Vaclav Kotesovec, Jul 16 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2019
STATUS
approved