login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309193
Smallest oblong number that is a repdigit of length > 2 in exactly n bases.
0
42, 3906, 641431602, 61035156
OFFSET
1,1
EXAMPLE
From Bernard Schott, Jul 18 2019: (Start)
a(1) = 42 = 6*7 = 222_4.
a(2) = 3906 = 62*63 = 111111_5 = 666_25.
a(3) = 641431602 = 25326*25327 = 999999_37 = (342,342,342)_1469 = (54,54,54)_3446.
a(4) = 61035156 = 7812*7813 = 111111111111_5 = 666666_25 = (31,31,31)_125 = (156,156,156)_625. (End)
PROG
(PARI) /* Functions isoblong, okrepu3 and dge3 after Michel Marcus in A309062 */
isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378
okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb; }
dge3(n) = {my(d=divisors(n), nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi); ); ); nb; }
a(n) = for(k=1, oo, if(isoblong(k), if(dge3(k)==n, return(k))))
CROSSREFS
Cf. A002378, A326384 (oblongs repdigits of length > 2 in exactly 1 base), A326385 (oblongs repdigits of length > 2 in exactly 2 bases), A309062 (oblongs repdigits of length > 2 in more than 2 bases).
Sequence in context: A053875 A255959 A348812 * A295438 A294974 A263057
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jul 16 2019
STATUS
approved