login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308836
The nome q=exp(T_C/T_R)=Sum_{n>=0} a(n)*(x/64)^n follows from the series solutions of 3*T-d/dx(16*(1-x)*x*dT/dx)=0.
3
0, 1, 40, 1876, 95072, 5045474, 276107408, 15444602248, 878268335296, 50588345910799, 2944021398570264, 172780225616034252, 10211876493716693664, 607169816926036666486, 36286222314596227018672, 2178246170438379512947864, 131270483744089714062036032
OFFSET
0,3
COMMENTS
Also appears in Ramanujan's theory of elliptic functions, signature 4 (cf. A000897). Almkvist et al. give a real and complex Ansatz for the second-order, ordinary differential equation: T_R = 1 + x*{Z[[x]]}, T_C = T_R*log(x) + x*{Z[[x]]}.
REFERENCES
B.C. Berndt, "Ramanujan's Notebooks Part II", Springer, 2012, pages 80-82.
LINKS
G. Almkvist et al., Generalizations of Clausen's Formula and Algebraic Transformations of Calabi-Yau Differential Equations, Proceedings of the Edinburgh Mathematical Society, 54 (2011), p. 275.
MATHEMATICA
G[nMax_] := Dot[RecurrenceTable[ {Dot[{(4*n - 7)^2 (4*n - 5)^2 (8*n - 3), -16 (n - 1) (105 - 562*n + 1056*n^2 - 864*n^3 + 256*n^4), 256 (n - 1) n^3 (8*n - 11)}, a[n - #] & /@ Reverse[Range[0, 2]]] == 0, a[0] == 0, a[1] == 5/8}, a, {n, 0, nMax}], x^Range[0, nMax]];
qSer[nMax_] := Expand[Times[x, Normal[ Series[Exp[ Divide[G[nMax], Hypergeometric2F1[1/4, 3/4, 1, x]]], {x, 0, nMax}]]]];
CoefficientList[(1/k)*qSer[20] /. {x -> k*x}, x] /. {k -> 64}
CROSSREFS
KEYWORD
nonn
AUTHOR
Bradley Klee, Jun 27 2019
STATUS
approved