|
|
A308836
|
|
The nome q=exp(T_C/T_R)=Sum_{n>=0} a(n)*(x/64)^n follows from the series solutions of 3*T-d/dx(16*(1-x)*x*dT/dx)=0.
|
|
3
|
|
|
0, 1, 40, 1876, 95072, 5045474, 276107408, 15444602248, 878268335296, 50588345910799, 2944021398570264, 172780225616034252, 10211876493716693664, 607169816926036666486, 36286222314596227018672, 2178246170438379512947864, 131270483744089714062036032
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also appears in Ramanujan's theory of elliptic functions, signature 4 (cf. A000897). Almkvist et al. give a real and complex Ansatz for the second-order, ordinary differential equation: T_R = 1 + x*{Z[[x]]}, T_C = T_R*log(x) + x*{Z[[x]]}.
|
|
REFERENCES
|
B.C. Berndt, "Ramanujan's Notebooks Part II", Springer, 2012, pages 80-82.
|
|
LINKS
|
Table of n, a(n) for n=0..16.
G. Almkvist et al., Generalizations of Clausen's Formula and Algebraic Transformations of Calabi-Yau Differential Equations, Proceedings of the Edinburgh Mathematical Society, 54 (2011), p. 275.
|
|
MATHEMATICA
|
G[nMax_] := Dot[RecurrenceTable[ {Dot[{(4*n - 7)^2 (4*n - 5)^2 (8*n - 3), -16 (n - 1) (105 - 562*n + 1056*n^2 - 864*n^3 + 256*n^4), 256 (n - 1) n^3 (8*n - 11)}, a[n - #] & /@ Reverse[Range[0, 2]]] == 0, a[0] == 0, a[1] == 5/8}, a, {n, 0, nMax}], x^Range[0, nMax]];
qSer[nMax_] := Expand[Times[x, Normal[ Series[Exp[ Divide[G[nMax], Hypergeometric2F1[1/4, 3/4, 1, x]]], {x, 0, nMax}]]]];
CoefficientList[(1/k)*qSer[20] /. {x -> k*x}, x] /. {k -> 64}
|
|
CROSSREFS
|
Cf. A005797, A308835, A308837.
Sequence in context: A147520 A190926 A143314 * A189503 A190076 A278729
Adjacent sequences: A308833 A308834 A308835 * A308837 A308838 A308839
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Bradley Klee, Jun 27 2019
|
|
STATUS
|
approved
|
|
|
|