|
|
A308833
|
|
Numbers r such that the r-th tetrahedral number A000292(r) divides r!.
|
|
1
|
|
|
1, 7, 8, 13, 14, 19, 20, 23, 24, 25, 26, 31, 32, 33, 34, 37, 38, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 61, 62, 63, 64, 67, 68, 73, 74, 75, 76, 79, 80, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 97, 98, 103, 104, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: for every odd integer r > 1, the following statements are equivalent: a) r is a term of this sequence, b) r + 1 is a term of this sequence, c) r + 2 is composite.
|
|
LINKS
|
|
|
EXAMPLE
|
The 7th tetrahedral number is 84, and 84*60 = 5040 = 7!.
|
|
MAPLE
|
q := n -> (irem(n!, n*(n+1)*(n+2)/6) = 0):
select(q, [$1..120])[];
|
|
MATHEMATICA
|
Select[Range@ 120, Mod[#!, Pochhammer[#, 3]/6] == 0 &] (* Michael De Vlieger, Jul 08 2019 *)
|
|
PROG
|
(PARI) isok(k) = !(k! % (k*(k+1)*(k+2)/6)); \\ Michel Marcus, Jun 28 2019
(PARI) is(n) = { my(f = factor(binomial(n + 2, 3))); forstep(i = #f~, 1, -1, if(val(n, f[i, 1]) - f[i, 2] < 0, return(0) ) ); 1 }
|
|
CROSSREFS
|
Cf. A007921 (numbers which are not difference of two primes), A153238.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|