login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308739
Decimal expansion of BesselI(1/3,2/3)/BesselI(-2/3,2/3).
6
8, 0, 5, 4, 8, 0, 0, 2, 2, 3, 8, 6, 9, 1, 8, 0, 4, 5, 8, 7, 3, 5, 5, 6, 6, 2, 7, 4, 7, 5, 7, 8, 6, 4, 1, 0, 4, 3, 9, 1, 3, 1, 4, 4, 6, 4, 2, 0, 4, 4, 2, 6, 8, 8, 6, 0, 2, 9, 6, 6, 8, 3, 4, 0, 6, 5, 1, 9, 2, 0, 3, 8, 2, 3, 0, 9, 3, 3, 5, 9, 3, 7, 4, 9, 2, 4, 5, 7, 6, 3, 2, 2, 3, 8, 5, 3, 6, 2, 5, 0, 5, 5, 4, 7, 7, 6, 5, 7, 9, 7
OFFSET
0,1
COMMENTS
From Peter Bala, Nov 28 2019: (Start)
Denoting this constant by c, we have the related simple continued fraction expansions:
3*c = [2; 2, 2, 2, 30, 4, 2, 1, 4, 1, 2, 6, 66, 8, 2, 1, 8, 1, 2, 10, ..., 3*(12*k + 10), 4*k + 4, 2, 1, 4*k + 4, 1, 2, 4*k + 6, ...];
(1/3)*c = [0; 3, 1, 2, 1, 1, 1, 2, 3, 39, 5, 2, 1, 5, 1, 2, 7, 75, 9, 2, 1, 9, 1, 2, 11, ..., 3*(12*k + 1), 4*k + 1, 2, 1, 4*k + 1, 1, 2, 4*k + 3, ...]. (End)
FORMULA
Equals 1/(1 + 1/(4 + 1/(7 + 1/(10 + 1/(13 + 1/(16 + 1/(19 + 1/(22 + 1/(25 + 1/(28 + ...)))))))))).
EXAMPLE
0.8054800223869180458735566274757864104391314464...
MATHEMATICA
RealDigits[BesselI[1/3, 2/3]/BesselI[-2/3, 2/3], 10, 110] [[1]]
PROG
(PARI) besseli(1/3, 2/3)/besseli(-2/3, 2/3) \\ Felix Fröhlich, Dec 01 2019
CROSSREFS
Cf. A016777 (continued fraction), A073744, A298241, A308740, A308741, A308742, A308743, A308744.
Sequence in context: A096152 A021558 A335958 * A118253 A135001 A377297
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Jun 21 2019
STATUS
approved