The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308736 Numbers n such that n, n+2, n+4, n+6 are of the form p^2*q where p and q are distinct primes. 3
 2523, 3112819, 5656019, 10132171, 12167825, 16639567, 25302173, 31995475, 35158921, 37334419, 43890719, 44816821, 47715269, 53548223, 55534523, 90526075, 90533525, 127558319, 142929025, 143167073, 144989575, 147182225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are odd. Proof: if n is even then out of the 4 numbers n, n+2, n+4, n+6, 2 of them must be either both of the form 2*p^2, 2*q^2, or both of the form 4*p, 4*q. In either case, for p != q and p, q prime, the difference between these 2 numbers are more than 6, reaching a contradiction. - Chai Wah Wu, Jun 24 2019 LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 123 terms from Ray Chandler) EXAMPLE 2523 = 3*29*29, 2525 = 5*5*101, 2527 = 7*19*19, 2529 = 3*3*281. MATHEMATICA psx = Table[{0}, {7}]; nmax = 150000000; n = 1; lst = {}; While[n < nmax, n++; psx = RotateRight[psx]; psx[[1]] = Sort[Last /@ FactorInteger[n]]; If[Union[{psx[[1]], psx[[3]], psx[[5]], psx[[7]]}] == {{1, 2}}, AppendTo[lst, n - 6]]; ]; lst PROG (Python) from sympy import factorint A308736_list, n, mlist = [], 3, [False]*4 while len(A308736_list) < 100: if mlist[0] and mlist[1] and mlist[2] and mlist[3]: A308736_list.append(n) n += 2 f = factorint(n+6) mlist = mlist[1:] + [(len(f), sum(f.values())) == (2, 3)] # Chai Wah Wu, Jun 24 2019, Jan 03 2022. CROSSREFS Cf. A074173, A308735. Sequence in context: A308735 A096026 A278003 * A031984 A045213 A251918 Adjacent sequences: A308733 A308734 A308735 * A308737 A308738 A308739 KEYWORD nonn AUTHOR Ray Chandler, Jun 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 15:34 EST 2024. Contains 370494 sequences. (Running on oeis4.)