The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096026 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 8 and (n+9) mod 11 <> 1. 6
 2523, 5043, 7563, 10083, 12603, 15123, 17643, 20163, 22683, 25203, 30243, 32763, 35283, 37803, 40323, 42843, 45363, 47883, 50403, 52923, 57963, 60483, 63003, 65523, 68043, 70563, 73083, 75603, 78123, 80643, 85683, 88203, 90723, 93243 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that n mod 2520 = 3 and n mod 27720 <> 3. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1). FORMULA G.f.: 3*x*(839*x^10 +840*x^9 +840*x^8 +840*x^7 +840*x^6 +840*x^5 +840*x^4 +840*x^3 +840*x^2 +840*x +841) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 11 2013 EXAMPLE 2523 mod 2 = 2524 mod 3 = 2525 mod 4 = 2526 mod 5 = 2527 mod 6 = 2528 mod 7 = 2529 mod 8 = 2530 mod 9 = 2531 mod 10 = 1 and 2532 mod 11 = 2, hence 2523 is in the sequence. MATHEMATICA Select[Range[94000], Union[Mod[#+Range[0, 8], Range[2, 10]]]=={1}&&Mod[ #+9, 11]!=1&] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {2523, 5043, 7563, 10083, 12603, 15123, 17643, 20163, 22683, 25203, 30243}, 40](* Harvey P. Dale, Sep 25 2019 *) PROG (PARI) {k=9; m=95000; for(n=1, m, j=0; b=1; while(b&&j

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 06:16 EST 2024. Contains 370219 sequences. (Running on oeis4.)