login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096024
Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 5 and (n+6) mod 8 <> 1.
5
423, 1263, 2103, 2943, 3783, 4623, 5463, 6303, 7143, 7983, 8823, 9663, 10503, 11343, 12183, 13023, 13863, 14703, 15543, 16383, 17223, 18063, 18903, 19743, 20583, 21423, 22263, 23103, 23943, 24783, 25623, 26463, 27303, 28143, 28983, 29823
OFFSET
1,1
COMMENTS
Numbers n such that n mod 840 = 423.
FORMULA
a(n) = 2*a(n-1)-a(n-2). G.f.: 3*x*(139*x+141) / (x-1)^2. - Colin Barker, Apr 11 2013
a(n) = 840*n-417. [Bruno Berselli, Apr 11 2013]
EXAMPLE
423 mod 2 = 424 mod 3 = 425 mod 4 = 426 mod 5 = 427 mod 6 = 428 mod 7 = 1 and 429 mod 8 = 5, hence 423 is in the sequence.
PROG
(PARI) {k=6; m=30000; for(n=1, m, j=0; b=1; while(b&&j<k, if((n+j)%(2+j)==1, j++, b=0)); if(b&&(n+k)%(2+k)!=1, print1(n, ", ")))}
(Magma) [n: n in [1..30000] | forall{j: j in [0..5] | IsOne((n+j) mod (2+j)) and (n+6) mod 8 ne 1}]; // Bruno Berselli, Apr 11 2013
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jun 15 2004
STATUS
approved