login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096024 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 5 and (n+6) mod 8 <> 1. 5
423, 1263, 2103, 2943, 3783, 4623, 5463, 6303, 7143, 7983, 8823, 9663, 10503, 11343, 12183, 13023, 13863, 14703, 15543, 16383, 17223, 18063, 18903, 19743, 20583, 21423, 22263, 23103, 23943, 24783, 25623, 26463, 27303, 28143, 28983, 29823 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers n such that n mod 840 = 423.

LINKS

Table of n, a(n) for n=1..36.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

a(n) = 2*a(n-1)-a(n-2). G.f.: 3*x*(139*x+141) / (x-1)^2. - Colin Barker, Apr 11 2013

a(n) = 840*n-417. [Bruno Berselli, Apr 11 2013]

EXAMPLE

423 mod 2 = 424 mod 3 = 425 mod 4 = 426 mod 5 = 427 mod 6 = 428 mod 7 = 1 and 429 mod 8 = 5, hence 423 is in the sequence.

PROG

(PARI) {k=6; m=30000; for(n=1, m, j=0; b=1; while(b&&j<k, if((n+j)%(2+j)==1, j++, b=0)); if(b&&(n+k)%(2+k)!=1, print1(n, ", ")))}

(MAGMA) [n: n in [1..30000] | forall{j: j in [0..5] | IsOne((n+j) mod (2+j)) and (n+6) mod 8 ne 1}]; // Bruno Berselli, Apr 11 2013

CROSSREFS

Cf. A007310, A017629, A096022, A096023, A096025, A096026, A096027.

Sequence in context: A238285 A231939 A203099 * A205980 A206662 A205831

Adjacent sequences:  A096021 A096022 A096023 * A096025 A096026 A096027

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Jun 15 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 05:25 EDT 2017. Contains 287077 sequences.