|
|
A206662
|
|
Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward and upward neighbors.
|
|
1
|
|
|
423, 2691, 17844, 119727, 815847, 5593611, 38594841, 267189276, 1854776850, 12896494731, 89778289281, 625461045417, 4359732229497, 30399727224177, 212022747357321, 1478983212563424, 10317870774963420, 71985922839937911
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 14*a(n-1) -37*a(n-2) -242*a(n-3) +1172*a(n-4) +717*a(n-5) -9633*a(n-6) +5674*a(n-7) +31176*a(n-8) -35091*a(n-9) -39354*a(n-10) +60926*a(n-11) +15852*a(n-12) -33558*a(n-13) -12834*a(n-14) +15013*a(n-15) +2888*a(n-16) -2402*a(n-17) -318*a(n-18) -11*a(n-19) +49*a(n-20) for n>22.
|
|
EXAMPLE
|
Some solutions for n=4:
..2..2..0....2..1..1....0..1..0....2..1..0....1..2..0....2..2..0....2..0..1
..0..2..2....1..1..2....1..2..1....2..1..2....0..2..0....1..2..0....2..0..1
..0..2..0....0..1..2....2..1..0....2..0..1....0..2..2....2..2..0....0..0..0
..2..2..2....1..1..1....0..2..1....1..2..0....2..2..1....2..0..0....1..1..2
..2..0..0....0..1..0....1..0..2....0..1..0....0..2..2....2..2..2....2..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|