login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206663
Number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward and upward neighbors.
1
2286, 17844, 166605, 1637151, 16537155, 170170494, 1770039198, 18532885713, 194818897170, 2052968751492, 21666547077210, 228879866510010, 2419265310522048, 25581340823434362, 270562509737535471
OFFSET
1,1
COMMENTS
Column 3 of A206668.
LINKS
FORMULA
Empirical: a(n) = 26*a(n-1) -144*a(n-2) -1588*a(n-3) +18637*a(n-4) +5758*a(n-5) -751704*a(n-6) +1840094*a(n-7) +14513664*a(n-8) -65772588*a(n-9) -130792664*a(n-10) +1118371160*a(n-11) +21939840*a(n-12) -11122773609*a(n-13) +12058897820*a(n-14) +67650111988*a(n-15) -135206849805*a(n-16) -242499184542*a(n-17) +791308710878*a(n-18) +391513919157*a(n-19) -2894137633169*a(n-20) +570261077334*a(n-21) +6957579656654*a(n-22) -4843693048003*a(n-23) -10901474451808*a(n-24) +13280426659456*a(n-25) +9886997716394*a(n-26) -21783374723218*a(n-27) -1550353388521*a(n-28) +23200269912687*a(n-29) -8933522230705*a(n-30) -15488045412445*a(n-31) +13388405243555*a(n-32) +4905930909701*a(n-33) -10088874981494*a(n-34) +1430106930020*a(n-35) +4307101996461*a(n-36) -2512129319470*a(n-37) -739394091588*a(n-38) +1427826250529*a(n-39) -246681141171*a(n-40) -495751351484*a(n-41) +199766418707*a(n-42) +120977867459*a(n-43) -65754432424*a(n-44) -21474998274*a(n-45) +14092056596*a(n-46) +1990973380*a(n-47) -1895558392*a(n-48) +92084728*a(n-49) +79134384*a(n-50) -10328256*a(n-51) for n>55.
EXAMPLE
Some solutions for n=4:
..2..0..1..2....0..1..0..0....2..1..0..2....2..1..0..0....1..2..2..0
..2..0..1..1....2..2..2..1....1..0..2..0....2..1..1..2....0..1..0..0
..2..0..1..0....0..1..0..0....2..1..0..2....2..2..0..1....2..1..0..1
..0..0..0..0....2..1..2..1....1..2..1..0....0..1..2..2....1..1..1..1
..2..2..0..2....0..0..0..1....2..1..0..1....1..0..2..1....2..2..2..1
CROSSREFS
Sequence in context: A264256 A236700 A268892 * A247990 A206103 A251302
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 11 2012
STATUS
approved