The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308399 Expansion of 1 / Sum_{k=-oo..oo} (-x)^(k*(4*k + 1)). 1
 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 1, 3, 3, 2, 6, 3, 4, 8, 4, 9, 9, 6, 15, 10, 12, 20, 12, 22, 23, 18, 35, 26, 30, 46, 32, 51, 54, 45, 76, 62, 71, 99, 76, 111, 117, 104, 160, 136, 154, 205, 167, 230, 244, 223, 319, 286, 319, 406, 349, 456, 484, 458, 619, 570, 632, 779, 695 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Number of partitions of n into parts congruent to {0, 3, 5} mod 8. Convolution inverse of A244465. LINKS FORMULA G.f.: 1 / Sum_{k>=0} (-x)^A074378(k). G.f.: Product_{k>=1} 1 / ((1 - x^(8*k - 5)) * (1 - x^(8*k - 3)) * (1 - x^(8*k))). G.f.: ( Sum_{k>=0} A000041(k)*(-x)^k ) / ( Sum_{k>=0} A000009(2*k)*(-x)^k ). a(n) ~ sqrt(sqrt(2) - 1) * exp(sqrt(n)*Pi/2) / (2^(9/4)*n). - Vaclav Kotesovec, May 25 2019 MATHEMATICA nmax = 68; CoefficientList[Series[1/Sum[(-x)^(k (4 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x] nmax = 68; CoefficientList[Series[Product[1/((1 - x^(8 k - 5)) (1 - x^(8 k - 3)) (1 - x^(8 k))), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 68; CoefficientList[Series[Sum[PartitionsP[k] (-x)^k, {k, 0, nmax}]/Sum[PartitionsQ[2 k] (-x)^k, {k, 0, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000009, A000041, A006950, A007742, A047622, A074378, A195850, A244465, A308400. Sequence in context: A293312 A136405 A210871 * A287601 A035667 A092865 Adjacent sequences:  A308396 A308397 A308398 * A308400 A308401 A308402 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 03:09 EDT 2021. Contains 345351 sequences. (Running on oeis4.)