login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308367
Expansion of Sum_{k>=1} x^k/(1 + k*x^k).
3
1, 0, 2, -2, 2, 1, 2, -12, 11, 11, 2, -49, 2, 57, 108, -200, 2, 40, 2, -391, 780, 1013, 2, -5423, 627, 4083, 6644, -4453, 2, -5043, 2, -49680, 59172, 65519, 18028, -251062, 2, 262125, 531612, -861481, 2, -515723, 2, -1049929, 5180382, 4194281, 2, -27246019, 117651
OFFSET
1,3
LINKS
FORMULA
L.g.f.: log(Product_{k>=1} (1 + k*x^k)^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-d)^(n/d-1).
a(n) = 2 if n is odd prime.
MATHEMATICA
nmax = 49; CoefficientList[Series[Sum[x^k /(1 + k x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 49; CoefficientList[Series[Log[Product[(1 + k x^k)^(1/k^2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
Table[Sum[(-d)^(n/d - 1), {d, Divisors[n]}], {n, 1, 49}]
PROG
(PARI) a(n) = sumdiv(n, d, (-d)^(n/d-1)); \\ Michel Marcus, Mar 22 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 22 2019
STATUS
approved