login
A308369
G.f. A(x) satisfies: A(x) = x * Product_{k>=1} 1/(1 - A(x^k))^k.
4
1, 1, 4, 12, 41, 133, 485, 1752, 6677, 25809, 102130, 409532, 1665128, 6837348, 28333334, 118288386, 497120101, 2101181482, 8926401690, 38093403136, 163224292328, 701951448268, 3028792691947, 13108224143298, 56887750453404, 247512117880754, 1079421026637431
OFFSET
1,3
FORMULA
G.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} Sum_{d|k} d^2 * A(x^d)^(k/d) / k).
MATHEMATICA
terms = 27; A[_] = 0; Do[A[x_] = x Product[1/(1 - A[x^k])^k, {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2019
STATUS
approved