login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308369
G.f. A(x) satisfies: A(x) = x * Product_{k>=1} 1/(1 - A(x^k))^k.
4
1, 1, 4, 12, 41, 133, 485, 1752, 6677, 25809, 102130, 409532, 1665128, 6837348, 28333334, 118288386, 497120101, 2101181482, 8926401690, 38093403136, 163224292328, 701951448268, 3028792691947, 13108224143298, 56887750453404, 247512117880754, 1079421026637431
OFFSET
1,3
FORMULA
G.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} Sum_{d|k} d^2 * A(x^d)^(k/d) / k).
MATHEMATICA
terms = 27; A[_] = 0; Do[A[x_] = x Product[1/(1 - A[x^k])^k, {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2019
STATUS
approved