login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=1} x^k/(1 + k*x^k).
3

%I #12 Mar 22 2021 14:59:39

%S 1,0,2,-2,2,1,2,-12,11,11,2,-49,2,57,108,-200,2,40,2,-391,780,1013,2,

%T -5423,627,4083,6644,-4453,2,-5043,2,-49680,59172,65519,18028,-251062,

%U 2,262125,531612,-861481,2,-515723,2,-1049929,5180382,4194281,2,-27246019,117651

%N Expansion of Sum_{k>=1} x^k/(1 + k*x^k).

%H Seiichi Manyama, <a href="/A308367/b308367.txt">Table of n, a(n) for n = 1..5000</a>

%F L.g.f.: log(Product_{k>=1} (1 + k*x^k)^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n.

%F a(n) = Sum_{d|n} (-d)^(n/d-1).

%F a(n) = 2 if n is odd prime.

%t nmax = 49; CoefficientList[Series[Sum[x^k /(1 + k x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t nmax = 49; CoefficientList[Series[Log[Product[(1 + k x^k)^(1/k^2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest

%t Table[Sum[(-d)^(n/d - 1), {d, Divisors[n]}], {n, 1, 49}]

%o (PARI) a(n) = sumdiv(n, d, (-d)^(n/d-1)); \\ _Michel Marcus_, Mar 22 2021

%Y Cf. A076717, A087909, A300786.

%K sign

%O 1,3

%A _Ilya Gutkovskiy_, May 22 2019