login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307859
Consider the non-unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
0
24, 112, 189, 578, 1984, 2125, 3993, 5043, 9583, 19197, 32512, 126445, 149565, 175689, 225578, 236883, 1589949, 1862935, 1928125, 3171174, 5860526, 6149405, 11442047, 16731741, 60634549, 75062535, 134201344, 177816209, 1162143369, 4474779517, 10369035821
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Unitary Divisor
Wikipedia, Unitary divisor
EXAMPLE
Divisors of 578 are 1, 2, 17, 34, 289, 578. Non-unitary aliquot parts are 17 and 34.
We have:
17 + 34 = 51;
34 + 51 = 85;
51 + 85 = 136;
85 + 136 = 221;
136 + 221 = 357;
221 + 357 = 578.
MAPLE
with(numtheory):P:=proc(q, h) local a, b, c, k, n, t, v; v:=array(1..h);
for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]);
a:=[]; for k from 2 to nops(b)-1 do if gcd(b[k], n/b[k])>1 then
a:=[op(a), b[k]]; fi; od; b:=nops(a); if b>1 then c:=0;
for k from 1 to b do v[k]:=a[k]; c:=c+a[k]: od;
t:=b+1; v[t]:=c; while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1);
od; if v[t]=n then print(n); fi; fi; fi; od; end: P(10^9, 1000);
MATHEMATICA
aQ[n_] := CompositeQ[n] && Module[{s = Select[Divisors[n], GCD[#, n/#] != 1 &]}, If[Length[s] < 2, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[10^4], aQ] (* Amiram Eldar, May 07 2019 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 02 2019
EXTENSIONS
a(20)-a(31) from Amiram Eldar, May 07 2019
STATUS
approved