login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247013
Consider the prime factors, with multiplicity, in ascending order, of a composite number not ending in 0. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to the reverse of themselves.
5
4, 9, 14, 94, 194, 371, 1887, 1994, 11282, 25656, 61081, 66691, 112082, 394407, 582225, 4284191, 5681778, 9317913, 9361072, 9493615, 19120874, 75519134, 92688481
OFFSET
1,1
COMMENTS
Similar to A212875 but reading the sum backwards.
If numbers ending in 0 are allowed, 1200 has factors 2,2,2,2,3,5,5 which add up to 21. - Chai Wah Wu, Sep 12 2014
EXAMPLE
Prime factors of 1994 are 2 and 997;
2 + 997 = 999;
997 + 999 = 1996;
999 + 1996 = 2995;
1996 + 2995 = 4991 that is the reverse of 1994.
Prime factors of 25656 are 2^3, 3 and 1069;
2 + 2 + 2 + 3 + 1069 = 1078;
2 + 2 + 3 + 1069 + 1078 = 2154;
2 + 3 + 1069 + 1078 + 2154 = 4306;
3 + 1069 + 1078 + 2154 + 4306 = 8610;
1069 + 1078 + 2154 + 4306 + 8610 = 17217;
1078 + 2154 + 4306 + 8610 + 17217 = 33365;
2154 + 4306 + 8610 + 17217 + 33365 = 65652 that is the reverse of 25656.
MAPLE
with(numtheory): R:=proc(w) local x, y; x:=w; y:=0;
while x>0 do y:=10*y+(x mod 10); x:=trunc(x/10); od: y; end:
P:=proc(q, h) local a, b, c, d, j, k, n, t, v; v:=array(1..h);
for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2];
b:=nops(a); c:=ilog10(n)+1; t:=0; d:=[];
for k from 1 to b do for j from 1 to a[k, 2] do d:=[op(d), a[k, 1]]; od;
od; d:=sort(d); for k from 1 to nops(d) do v[k]:=d[k]; od; a:=nops(d);
t:=a; t:=t+1; v[t]:=add(v[k], k=1..t-1); if R(v[t])=n then print(n);
else while ilog10(v[t])+1<=c do t:=t+1; v[t]:=add(v[k], k=t-a..t-1);
if R(v[t])=n then print(n); break; fi; od; fi; fi; od; end:
P(10^6, 1000);
MATHEMATICA
A247013 = {};
For[n = 4, n <= 1000000, n++,
If[Mod[n, 10] == 0 || PrimeQ[n], Continue[]];
r = IntegerReverse[n];
a = Flatten[Map[Table[#[[1]], {#[[2]]}] &, FactorInteger[n]]];
sum = Total[a];
While[sum < r, sum = Total[a = Join[Rest[a], {sum}]]];
If[sum == r, AppendTo[A247013, n]];
]; A247013 (* Robert Price, Sep 08 2019 *)
PROG
(Python)
from itertools import chain
from sympy import isprime, factorint
A247013_list = []
for n in range(2, 10**8):
....m = int(str(n)[::-1])
....if n % 10 and not isprime(n):
........x = sorted(chain.from_iterable([p]*e for p, e in factorint(n).items()))
........y = sum(x)
........while y < m:
............x, y = x[1:]+[y], 2*y-x[0]
........if y == m:
............A247013_list.append(n) # Chai Wah Wu, Sep 12 2014
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Paolo P. Lava, Sep 09 2014
EXTENSIONS
More terms and definition edited by Chai Wah Wu, Sep 12 2014
STATUS
approved