login
A247010
Primes p such that (p-3)/2 and 2*p+3 are both prime.
1
7, 13, 17, 29, 89, 97, 137, 197, 229, 277, 337, 349, 397, 557, 617, 797, 929, 937, 1117, 1217, 1237, 1777, 2129, 2309, 2437, 2477, 2617, 2749, 2857, 2909, 3049, 3109, 3137, 3329, 3389, 4057, 4229, 4289, 4409, 5237, 5297, 5417, 5557, 5717, 5857, 6689
OFFSET
1,1
COMMENTS
A023204 INTERSECT A089531. After 7, all terms are obviously in A002144.
Conjecture: the sequence is infinite.
LINKS
FORMULA
a(n) = 2*A023242(n) + 3. [Bruno Berselli, Sep 09 2014]
MATHEMATICA
Select[Prime[Range[900]], And@@PrimeQ/@{(# - 3)/2, 2 # + 3} &]
PROG
(Magma) [p: p in PrimesUpTo(7000) | IsPrime((p-3)div 2) and IsPrime(2*p+3)];
(Sage)
def t(i): return 2*i+3
[t(p) for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014
(PARI) is(n)=isprime(n) && isprime(2*n+3) && isprime((n-3)\2) \\ Charles R Greathouse IV, Sep 09 2014
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Sep 09 2014
STATUS
approved