login
A154408
Primes p such that (p^2 + 1)/10 is also prime.
3
7, 13, 17, 23, 37, 53, 67, 97, 103, 113, 127, 137, 163, 167, 197, 223, 227, 263, 277, 283, 347, 367, 373, 383, 397, 433, 503, 547, 587, 617, 653, 673, 677, 683, 773, 797, 823, 877, 883, 937, 947, 953, 997, 1063, 1103, 1117, 1163, 1187, 1213, 1367, 1423, 1447
OFFSET
1,1
LINKS
EXAMPLE
37 is in the sequence because both 37 and (37^2 + 1)/10 = 137 are primes. [Emeric Deutsch, Jan 21 2009]
MAPLE
a := proc (n) if isprime(n) = true and type((1/10)*n^2+1/10, integer) = true and isprime((1/10)*n^2+1/10) = true then n else end if end proc: seq(a(n), n = 2 .. 1700); # Emeric Deutsch, Jan 21 2009
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[(#^2 + 1)/10] &] (* Vincenzo Librandi, Oct 15 2012 *)
PROG
(Magma) [p: p in PrimesInInterval(7, 2500) | IsPrime((p^2 + 1) div 10)]; // Vincenzo Librandi, Oct 15 2012
CROSSREFS
Cf. A017305.
Sequence in context: A136083 A167276 A181570 * A089531 A247010 A138337
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 09 2009
EXTENSIONS
Corrected and extended by Emeric Deutsch, Jan 21 2009
STATUS
approved