login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167276
Primes p such that p^2=x^2+y^2-1 with x and y also prime.
1
7, 13, 17, 23, 31, 37, 41, 43, 47, 53, 67, 73, 83, 89, 103, 107, 109, 137, 149, 151, 157, 163, 173, 191, 193, 227, 229, 233, 241, 263, 269, 293, 307, 311, 313, 317, 331, 337, 353, 359, 383, 389, 397, 401, 421, 431, 439, 443, 457, 463, 467, 487, 499, 523, 557, 577, 593, 599, 613, 619, 643, 683, 701, 727, 733, 757, 773, 829, 839, 853, 857, 863, 887, 947, 967, 977, 983, 997
OFFSET
1,1
COMMENTS
Appears to be infinite.
Since (5*x+13)^2 + 1 = (3*x+7)^2 + (4*x+11)^2, it appears that there are infinitely many members of this sequence of the form 5*x+13 where x is an even number, that is the form of A030431(n). See the solution 78 at page 49 in the given reference (250 Problems in Elementary Number Theory) for the related conjecture. - Altug Alkan, Mar 30 2016
REFERENCES
W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, Problem 78 page 7.
FORMULA
{ A000040(i): A066872(i) in A045636}. [R. J. Mathar, Nov 09 2009]
EXAMPLE
a(1)=7 (x=5, y=5); a(2)=13 (x=7, y=11); a(3)=17 (x=11, y=17); a(4)=23 (x=13, y=19); a(5)=31 (x=11, y=31);...; a(21)=463 (x=461, y=43)
MAPLE
isA045636 := proc(n) local p, q ; p := 2 ; while p^2+4 <= n do q := p ; while p^2+q^2 <= n do if q^2+p^2 = n then return true; end if ; q := nextprime(q) ; end do ; p := nextprime(p) ; end do ; return false ; end proc: A066872 := proc(n) ithprime(n)^2+1 ; end: for n from 1 to 200 do if isA045636(A066872(n)) then printf("%d, ", ithprime(n)) ; end if ; end do ; # R. J. Mathar, Nov 09 2009
MATHEMATICA
Select[Prime@ Range@ 168, Resolve[Exists[{x, y}, Reduce[#^2 == x^2 + y^2 - 1, {x, y}, Primes]]] &] (* Michael De Vlieger, Mar 30 2016 *)
CROSSREFS
Cf. A000040.
Sequence in context: A108334 A288713 A136083 * A181570 A154408 A089531
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and extended by Daniel Platt, Nov 02 2009
STATUS
approved