login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162451
Numbers k which can be split into two numbers x and y such that x^3 + y^2 is a multiple of k.
0
24, 111, 126, 128, 137, 147, 248, 426, 488, 575, 664, 834, 2317, 3060, 3968, 4016, 4464, 4717, 5025, 5484, 6036, 7049, 8064, 8256, 8704, 8772, 8919, 8946, 8973, 9081, 10535, 10575, 12943, 13467, 22553, 23478, 28082, 28488, 30927, 32768, 36864, 38463, 41664, 48657, 57399, 59177, 78078, 78741, 81075, 86964, 94987
OFFSET
1,1
EXAMPLE
24 is a term because 2^3 + 4^2 = 8+16 = 1 * 24.
111 is a term because 11^3 + 1^2 = 1331 + 1 = 1332 = 12 * 111.
94987 is a term because 94^3 + 987^2 = 830584 + 974169 = 1804753 = 19 * 94987.
PROG
(PARI) isok(n)={my(x=n, y=0, k=1); while(x >= 10, y+=x%10*k; x\=10; if(y>=k&&(x^3 + y^2)%n==0, return(1)); k*=10); 0}
{ for(n=1, 10^5, if(isok(n), print1(n, ", "))) } \\ Andrew Howroyd, Apr 17 2021
CROSSREFS
Sequence in context: A211599 A282211 A103473 * A307859 A263542 A281133
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 03 2009
EXTENSIONS
Missing terms inserted by Andrew Howroyd, Apr 17 2021
STATUS
approved