The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307643 Number of partitions of n^3 into exactly n positive cubes. 3
 1, 1, 0, 0, 0, 0, 1, 0, 2, 6, 14, 23, 51, 108, 228, 511, 1158, 2500, 5603, 12304, 26969, 59222, 130115, 285370, 624965, 1368603, 2987117, 6517822, 14187920, 30823278, 66834822, 144671698, 312551894, 673913968, 1450292087, 3114720013, 6676277754, 14281662079 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..79 FORMULA a(n) = A320841(n^3,n). EXAMPLE 9^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 7^3, so a(9) = 6. MAPLE b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),       `if`(i<1 or t<1, 0, b(n, i-1, t)+       `if`(i^3>n, 0, b(n-i^3, i, t-1))))     end: a:= n-> b(n^3, n\$2): seq(a(n), n=0..25);  # Alois P. Heinz, Oct 12 2019 CROSSREFS Cf. A000578, A030272, A259792, A298671, A298672, A307644, A319435, A320841. Sequence in context: A119846 A119844 A016060 * A239877 A032386 A074329 Adjacent sequences:  A307640 A307641 A307642 * A307644 A307645 A307646 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 19 2019 EXTENSIONS More terms from Vaclav Kotesovec, Apr 20 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:43 EDT 2020. Contains 337310 sequences. (Running on oeis4.)