login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307643 Number of partitions of n^3 into exactly n positive cubes. 3
1, 1, 0, 0, 0, 0, 1, 0, 2, 6, 14, 23, 51, 108, 228, 511, 1158, 2500, 5603, 12304, 26969, 59222, 130115, 285370, 624965, 1368603, 2987117, 6517822, 14187920, 30823278, 66834822, 144671698, 312551894, 673913968, 1450292087, 3114720013, 6676277754, 14281662079 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..79

Index entries for sequences related to sums of cubes

FORMULA

a(n) = A320841(n^3,n).

EXAMPLE

9^3 =

1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 =

1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 =

1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 =

1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 =

1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 =

2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 7^3,

so a(9) = 6.

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),

      `if`(i<1 or t<1, 0, b(n, i-1, t)+

      `if`(i^3>n, 0, b(n-i^3, i, t-1))))

    end:

a:= n-> b(n^3, n$2):

seq(a(n), n=0..25);  # Alois P. Heinz, Oct 12 2019

CROSSREFS

Cf. A000578, A030272, A259792, A298671, A298672, A307644, A319435, A320841.

Sequence in context: A119846 A119844 A016060 * A239877 A032386 A074329

Adjacent sequences:  A307640 A307641 A307642 * A307644 A307645 A307646

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 19 2019

EXTENSIONS

More terms from Vaclav Kotesovec, Apr 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 15:43 EDT 2020. Contains 337310 sequences. (Running on oeis4.)